Exercise 5

Given $f(x)=x^{2}+2 x$ and $g(x)=6-x^{2}$, find $f+g, f-g, f g$, and $\frac{f}{g}$. Determine the domain for each function in interval notation.

Solution

Determine each of the functions.

$$
\begin{aligned}
f+g & =f(x)+g(x)=\left(x^{2}+2 x\right)+\left(6-x^{2}\right)=x^{2}+2 x+6-x^{2}=2 x+6 \\
f-g & =f(x)-g(x)=\left(x^{2}+2 x\right)-\left(6-x^{2}\right)=x^{2}+2 x-6+x^{2}=2 x^{2}+2 x-6 \\
f g & =f(x) g(x)=\left(x^{2}+2 x\right)\left(6-x^{2}\right)=6 x^{2}-x^{4}+12 x-2 x^{3} \\
\frac{f}{g} & =\frac{f(x)}{g(x)}=\frac{x^{2}+2 x}{6-x^{2}}
\end{aligned}
$$

The domain of $f+g, f-g$, and $f g$ is $(-\infty, \infty)$ because each is a polynomial. The domain of f / g is found by requiring the denominator to not be zero.

$$
6-x^{2} \neq 0
$$

Solve for x.

$$
x^{2} \neq 6
$$

Take the square root of both sides.

$$
\sqrt{x^{2}} \neq \sqrt{6}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed.

$$
|x| \neq \sqrt{6}
$$

Remove the absolute value sign by placing \pm on the right side.

$$
x \neq \pm \sqrt{6}
$$

Therefore, the domain of f / g is $(-\infty,-\sqrt{6}) \cup(-\sqrt{6}, \sqrt{6}) \cup(\sqrt{6}, \infty)$.

